• رگرسیون مدل در SPSS – داده های مثال
  • رگرسیون مدل در SPSS -گفتگوها
  • رگرسیون مدل در SPSS- خروجی ضرایب
  • تجزیه و تحلیل دامنه های ساده 1 – با خطوط متناسب
  • تجزیه و تحلیل دامنه های ساده 2 – ضرایب

یک پزشک ورزشی معمولا درصد عضلات مراجعان خود را اندازه گیری می کند. وی همچنین از آنها می پرسد که معمولاً چند ساعت در هفته را صرف تمرین می کنند. پزشک ما گمان می کند مراجعانی که بیشتر تمرین میکنند نیز عضلات بیشتری دارند. علاوه بر این ، او فکر می کند که اثر تمرین بر عضلات با افزایش سن کاهش می یابد. در تجزیه و تحلیل رگرسیون چندگانه ، این به عنوان اثر متقابل مدل شناخته می شود. شکل زیر آن را نشان می دهد.

بنابراین چگونه می توان اثرمدل را آزمایش کرد؟ ما معمولاً این کار را در 3 مرحله انجام می دهیم:

  1. اگر هر دو پیش بینی کننده کمی باشند ، ابتدا میانگین مرکزی آنها رابدست می آوریم.
  2. سپس پیش بینی کننده های مرکز را در یک متغیر پیش بینی کننده اثرمتقابل ضرب می کنیم.
  3. درنهایت ، پیش بینی کننده های میانگین مرکزی و هم پیش بینی کننده اثرمتقابل را وارد یک تحلیل رگرسیون می کنیم.

رگرسیون مدل در SPSS - داده های مثال

این 3 پیش بینی کننده همه در muscle-percent-males-interaction.savوجود دارد که بخشی از آن در زیر نشان داده شده است.

ما میانگین مرکزی را با یک ابزار ساده انجام می دهیم که از SPSS Mean Centering and Interaction Tool. قابل بارگیری است.

بدست آوردن میانگین دستی نیز سخت نیست ، چگونگی آن درHow to Mean Center Predictors in SPSS? آورده شده است؟

رگرسیون مدل در SPSS -گفتگوها

 تجزیه و تحلیل رگرسیون مدل با رگرسیون خطی چندگانه متفاوت نیست: ما به

Analyze    >>      Regression   >>   Linear

رفته و گفتگوها را مانند تصویر زیر پر می کنیم.

با کلیک روی Paste ،  دستور زیر حاصل می شود. بیایید آن را اجرا کنیم.

*Regression with mean centered predictors and interaction predictor.

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA ZPP
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT mperc
/METHOD=ENTER cent_age cent_thours int_1
/SCATTERPLOT=(*ZRESID ,*ZPRED)
/RESIDUALS HISTOGRAM(ZRESID).

رگرسیون مدل در SPSS- خروجی ضرایب

1 سن با درصد عضلات رابطه منفی دارد. به طور متوسط ​​، مراجعان هر سال 0.072 واحد درصد از دست می دهند.

2 ساعات تمرین با درصد عضلات ارتباط مثبت دارد: مشتریان تمایل دارند که به ازای هر ساعتی که در هفته کار می کنند 0.9 درصد افزایش عضله.

3ضریب B منفی برای اثرمتقابل پیش کننده نشان می دهد كه اثر تمرین با افزایش سن منفی تر می شود یا کمترمثبت می شود.

برای تأثیرگذاری هر اثر، باید ببرسی کنیم از نظر آماری معنی دار باشد و از اندازه اثر معقولی برخوردار باشد.

 در p = 0.000 ، هر 3 اثر از نظر آماری بسیار قابل توجه هستند. برای اندازه گیری اندازه اثر ، می توانیم از همبستگی های نیمه جزئی (که به عنوان ” Part ” نشان داده می شود) استفاده کنیم که

  • r = 0.10 نشان دهنده یک اثر کوچک است.
  • r = 0.30 نشان دهنده یک اثر متوسط ​​است.
  • r = 0.50 نشان دهنده یک اثر بزرگ است.

تأثیر تمرین تقریباً بزرگ است و سن و اثرمتقابل سن با تمرین تقریباً متوسط ​​است. باصرف نظر از معنی داری آماری ، من فکر می کنم که اثرمتقابل ممکن است نادیده گرفته شود اگر همبستگی جزئی آن r < 0.10  یا همین حدودباشد اما در اینجا واضح است که این مورد وجود ندارد. بنابراین ما اثرمتقابل را با استفاده از تجزیه و تحلیل ساده دامنه میانگین ها بررسی خواهیم کرد.

با توجه به نمودار باقیمانده (در اینجا نشان داده نشده است) ، توجه داشته باشید که

  • هیستوگرام باقیمانده به نظر می رسد دقیقا به صورت نرمال توزیع نشده است اما -در غیر این صورت- توزیع دوجمله ای است. این تا حدودی به عرض سطل آشغال آن بستگی دارد و خیلی هشدار دهنده به نظر نمی رسد.
  • نمودارپراکنش باقیمانده هیچ نشانه ای از ناهمگونی یا منحنی بودن نشان نمی دهد. این نمودار ها نقض روشنی در مورد فرضیات رگرسیون ندارند.

 

ایجاد گروه های سنی

تحلیل دامنه های ساده با ایجاد گروه های سنی آغاز می شود. من سه گروه ایجاد میکنم: جوان ، میان سال ​​و کهن سال 33.3٪ از مشتریان گروه های من را تشکیل می دهند. این یک انتخاب دلخواه است: ما ممکن است به همین ترتیب 2 ، 3 ، 4 یا هر تعداد گروه دیگر را ایجاد کنیم. اندازه های برابر گروه نیز اجباری نیستند و حتی ممکن است تا حدودی غیر معمول باشند. در هر صورت ، دستور زیر سه گروه های سنی را به عنوان یک متغیر جدید در داده های ما ایجاد می کند.

*Create age tertile groups.

rank age
/ntiles(3) into agecat3.

*Label new variable and values.

variable labels agecat3 ‘Age Tertile Group’.
value labels agecat3 1 ‘Youngest Ages’ 2 ‘Intermediary Ages’ 3 ‘Highest Ages’.

*Check descriptive statistics age per age group.

means age by agecat3
/cells count min max mean stddev.

برخی از نتیجه گیری های اساسی از این جدول این است که

  1. گروه های سنی ما دارای اندازه نمونه برابر 81 = n است.
  2. میانگین سنی گروه به طور یکنواخت توزیع نشده است: تفاوت بین جوان و میان سال – حدود 6 سال – است که بسیار کمتر از تفاوت میان سال و کهن سال است که – حدود 13 سال.
  3. بالاترین گروه سنی نسبت به 2 گروه دیگر انحراف معیار بسیار بیشتری دارد.

موارد 2 و 3 به دلیل انحراف در سن ایجاد می شود و با استفاده از این سه گروه مطرح می شود. با این حال ، من فکر می کنم اندازه های گروه ها که باهم برابراند دلیل اصلی این دو معایب است.

 

تجزیه و تحلیل دامنه های ساده 1 - با خطوط متناسب

بیایید اکنون اثرمتقابل مدل بین سن و تمرین  را بررسی کنیم. همانطور که در زیر نشان داده شده است با ایجاد نمودار پراکنش شروع میکنیم.

با کلیک روی Paste ، نتایج دستور زیر حاصل می شود. بیایید آن را اجرا کنیم.

*Create scatterplot muscle percentage by uncentered training hours by age group.

GRAPH
/SCATTERPLOT(BIVAR)=thours WITH mperc BY agecat3
/MISSING=LISTWISE
/TITLE=’Muscle Percentage by Training Hours by Age Group’.

*After running chart, add separate fit lines manually.

افزودن خطوط مناسب جداگانه به نمودار پراکنش

پس از ایجاد نمودار پراکنش ، با دوبار کلیک بر روی آن ویرایش می کنیم. پنجره Chart Editor که باز می شود ، روی عنوانAdd Fit Line در زیر گروه ها کلیک می کنیم

پس از افزودن خطوط متناسب ، به سادگی ویرایشگر نمودار را می بندیم. نکته جزئی: نمودار پراکنش با خطوط متناسب (مجزا) می توانند با یک حرکت از Chart Builder در نسخه + 25 SPSSایجاد شوند ، اما ما این موضوع را بعداً توضیح خواهیم داد.

نتیجه

خطوط متناسب با  اثر متقابل سن با تمرین به خوبی توضیح می دهند:

  • 2 گروه سنی جوان با افزایش مداوم ساعت تمرین درصد عضلات شان افزایش می یابند.
  • برای پیر ترین مراجعان ، به نظر می رسد که تمرین به سختی روی درصد عضلات تأثیر می گذارد. . اینگونه است که تأثیر تمرین بر درصد عضلات با توجه به سن مدل می شود.
  • به طور متوسط ​​،هر 3 خط افزایش می یابند. این تأثیر اصلی آتمرین است.
  • به طور کلی ، خط مربوط به گروه کهن سال نسبت به 2 گروه دیگر کمتر افزایش میابد. این اثر اصلی ما در سن است.

باز هم ، تشابه بین 2 گروه جوان ممکن است به دلیل انحراف در سنین باشد: میانگین سنی برای این گروه ها خیلی متفاوت نیست اما بسیار متفاوت از بالاترین گروه سنی است.

تجزیه و تحلیل دامنه های ساده 2 - ضرایب

پس از مشاهده اثر متقابل ، بیایید اکنون آن را آزمایش کنیم: ما برای 3 گروه سنی خود به طور جداگانه یک رگرسیون خطی ساده را روی درصد عضلات اجرا خواهیم کرد. یک روش خوب برای انجام این کار در SPSS استفاده از SPLIT FILE است.

دستورالعمل REGRESSION از منو ایجاد میکنیم همانطور که قبلاً ولی (بدون مرکز) به عنوان تنها پیش بینی کننده آموش دادیم.

*Split file by age group.

sort cases by agecat3.
split file layered by agecat3.

*Run simple linear regression with uncentered training hours on muscle percentage.

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA ZPP
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT mperc
/METHOD=ENTER thours
/SCATTERPLOT=(*ZRESID ,*ZPRED)
/RESIDUALS HISTOGRAM(ZRESID).

*Split file off.

split file off.

نتیجه

جدول ضرایب نتایج قبلی ما را تأیید می کند:

1 برای جوانترین گروه سنی ، تأثیر تمرین از نظر آماری در 000/0 = p معنی دار است. علاوه بر این ، همبستگی بخشی آن با r = 0.59 بیانگر تأثیر زیادی است.

2 نتایج مربوط به گروه سنی میان سال تقریباً مشابه جوانترین گروه است.

3 برای بالاترین گروه سنی ، همبستگی جزئی r = 0.077 قابل توجه نیست. ما حتی اگر از نظر آماری قابل توجه باشد آن را جدی نمی گیریم- که در آن p = 0.49 نیست.

 آخر اینکه ، هیستوگرام های باقیمانده (در اینجا نشان داده نشده است) چیز غیرعادی نشان نمی دهد. نمودار پراکنش باقیمانده برای بزرگترین گروه سنی منحنی به نظر می رسد به جز برخی از مناطق دور. شاید باید از نزدیک به این تحلیل نگاهی بیندازیم اما این کار را برای یک روز دیگر می گذاریم.

ممنون از مطالعه شما